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Some Candidate Fusion Fuels

<0.V> at:
20keV 200keV

Conventional (and it’s still hard!):

D+T — n + *He + 17.6Mev 4.2 6.4
Advanced fuels:

D+D — n + °He + 3.3Mev 0.0052 0.88

p+ T + 4.0Mev

D+°He —> p + *He + 18.4Mev 0.0038 2.4
You’ll also get:

T+T — n + n + “He + 11.3Mev 0.0025 0.42

°He +°He — p + p + ‘He + 12.9Mev 0.0001 ©.08

T+°He — n + p+*He + 12.1Mev 0.003 0.92

n + X (important for high p—R ICF targets)

And if you think this is too easy....:
p+'"B — “He+*He +*He + 8.7Mev 0.0008 2.4
p+7°Li —  “*He + “He + 17.3Mev comparable
p+°’Be — “‘He+ 6Li + 2.1Mev comparable



Nuclear Energetics of the D-T Reaction

D+ T— 5He* - n +4He
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The Fusion Cross Section — and the Economics of r

(Thermonuclear) Fusion Energy - is Dominated

barns

by the Coulomb Barrier

D+ T — %He* - n + 4He

prob of Coulomb

: ; X nuclear part
barrier penetration P

SHe*
: resonance
: ‘(/ es

60keV

_> 1
gh ‘ 60keV E

E

NB: The DT cross section falls ~8 orders of magnitude
as energy is reduced from 10keV to 1keV!



There are Three (and Maybe _<_o_.m:.v m.,,
Ways to Achieve Fusion

Coulomb Barrier

. “ Reduction
| a‘ -m Hybrids:
< 44 % qm| mTF
B Inertial . MI-ICF,..
> Confinement I
Gravitational MO e :
Confinement
Density Temperature Confinement
Time
Magnetic solid/10° 10keV seconds
Inertial 10°«solid 10keV (t=0) 10’s picoseconds
Gravitational 10%xsolid 1keV 10° years
Coulomb solid 100’s °C Not applicable
Barrier

Reduction



How (= net energy gain) ?

Coulomb Barrier Screened Barrier
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W Net energy gain!



The Fusion Cross Section is Dominated by

Coulomb Barrier Penetration
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Modifying the Coulomb Barrier has a

Dramatic Effect on Fusion Cross Section
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The Modus Operandi of

Magnetic Fusion (Physics) Research

e Find a magnetic topology that

holds a plasma in equilibrium Vp=jxB

e That is stable at desired 2 2
n = 2 IB o IIaB, ~a BIRI, EEEEN
operating pressures B = S Pu L

o That contains heat fora ot Pax=Ew/te + Py, Q =Py, /P, 210 (20)

sufficient time to produce = n 1T ~ few x 10"® cm3s'keV
net energy gain

e For a sufficient burn time

AR TS

FIRE (~10s, $3) %

e But, in any event: o T2100,000,0@ and losses scale as
~F, 15, T N1 ..,




The Modus Operandi of Inertial Confinement
Fusion (Physics) Research

X-rays or Rocket reaction Fuel shell stagnates. Burn propagates to
driver beams implodes fuel Ignition begins in compressed outer fuel
heat ablator shell central hotspot Yield is produced

e Ignition and propagating burn:
(PR-T)potspot ~0-39.cm=2.10keV
e Yield and gain:
(PR)cold fuet ~39-cm2
e Why we need compression: ' '
If p=0.259.cm-3, m=2.5kg, Y~70kt, E; .,~3GJ But it’s all about the
If p=400g.cm3, m=5mg, Y~500MJ, E . .,~1MJ symmetry and stability!

driver



Technology (and Humanity’s) Constraints

® Qeng = Pelecl I:’recirc = T]thPfusl(P:aluxlnaux) = 11thnauxQ > 3 (at least!)
MFE: MNyNaux@ = 3; M4 ~0.3, N,ux~0-5; = Q=20
IFE: MyMariverG 2 35 Min~0-3, Nyriver~0.1; = G 2100

Technology
Shielding (nuclear cross sections) = Radial builds, materials
Surface heat flux; volumetric heat removal = Fusion power density, geometry, radial builds
Radiation damage = Radial builds, materials
Stresses = Magnet radial builds
Space charge, optics damage, beam access | = Driver power densities, pulse compression,
Pulsed fatigue = Radial builds, materials, quality control
“Economics”
Size / mass / cost = “Power density” of MFE core or IFE driver
Complexity = No. of systems, reliability, maintainability
Safety = Fusion power density, material choices, complexity
Environment (waste disposal) = Material choices, complexity
Proliferation = Fuel cycle, materials

NB: ICF is doing it once; IFE is doing it ten times a second for 30-y at 90% availability!
L. John Perkins LLNL 5/24/04



Capital Costs: Fission -v- Fusion

1600 - — aux

&« systems

@ 1200- i

- ] . . driver
£ 1000 . '

= tokamak

| reactor -
600 / . s G
i / | . - chamber

200 | _l t ;. ‘l’: v‘ :‘c | (
1 Lt .
ol B . REE

Fission: Better Experience PWR MFE: ARIES-I' IFE: HYLIFE-II

[] Reactor Plant Equipment Balance of Plant ] Land and Structures

® = For MFE, the cost and complexity is in the fusion power core
® = For IFE, the cost and complexity is in the driver



Present Fusion Systems are Very Complex

(But, hey -- we’re just trying to make it work at all ! )

® NIF - 3 times a day

Optics Assembly
Building

Switchyard

Capacitor Bay
{370MJ total stored energy)

e ITER - 400secs

Control Room
Diagnostics

e B

Fission (ALWR) Fusion (ARIES-RS)
Fuel power density (MW/m?3) 250 5
Fuel power flux (MW/m?) 0.5 5
Fast neutron power flux (MW/m?2) 0.01 (2MeV) 4 (14MeV)
Core power density (MW/m?3) 10 1
Core mass (tonne) 500 8,000
Mass power density (kW, /tonne) 1000 100

Rel. no. of pipes, welds, pumps, valves.... 1 ~10



MFE: Reduce the Size, Cost and Complexity

of the Fusion Power Core (Duh!)

Stellarator i

\

§ 3-D coils

Magnetized Target Fusion .-

Planar coils,
with nested sets e

Low-field

external coils

No toroidal
coils

_Sp-heroak_

But will it hold \

heat? FRC
(T=100,000,000°C) |

No toroidal
field




In IFE, the Target Drives the Driver Requirements

= Advanced Target Concepts?

m Fast ignition -
0 Laser fast ignition — Point designs indicates gain ~350 I
for ~700kJ compression energy and ~100kdJ fast ignitor -

O Cone focus geometries are under study

a High-intensity laser-driven fast ions may be an |
alternative fast ignition option

a In general, fast ignition may considerably relax present constraints on timing,
symmetry, stability and target fabrication

Fast
m Advanced fuel targets — Fast ignition ignitor
may permit us to burn advanced fuels: iRNE
D-D/D-°He/p-""B capsules with 1% DT ignitors.
With 0-20% of the energy in fast neutrons, this
might permit direct energy conversion of
target output.

DT ignitor \DD,DaHe,p‘nB
main fuel

B Can magnetic fields be employed?

a Z-pinches
1 Magnetized targets — pre-emplaced B-fields may aid hot-spot burn and suppress
electron heat conduction

LJP LLNL 5/24/04
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With Fusion Energy Appearing as

Charged Particles (Plasma), We Could.......

P i Direct Conversion
to Electricity via
MHD
\ ¥
= - Directed
Direct Conversion Thrust for
to Electricity via Advanced
Flux Compression Space
(Mima et al) Propulsion

= Can we do more with fusion energy than boil water for a steam cycle?



1000MW, “MFE” REACTORS: THE IMPACT OF ULTIMATE PHYSICS

Pulsed Steady-State Neoclassical Magnetic Ultimate
Inductive | Advanced Tokamak Tokamak Toroid Reactor(©)
Tokamak'™® |  savanced, TPX or No physics
ITER-like | ARIES-like phys.t» | Neoclass 1g, <1 | No1p, <1 | constraints
phys.(@)
Relative COE 2.4 - 3.3 1.8 1.4 1.2 1.0
Mass power density (kWg/tn) 19-26 62 100 210 410
Reactor Plant Eguig. fract. ]0.69— 0.75 |0.63 0.55 0.43 0.34
Ro (M) 9.0 — 11 5.7 4.2 3.8 1.6(c)
A 3.7-4.9 3.5 3.5 6.7 1.0
I (MA) 18 - 15 11 8.0 N/A N/A
B(T) 6.3-7.3 oa . 4.5 L 2.8 N/A ool
995 3.0'-3.0 4.0* 3.0 N/A N/A
Paux (MW) 0-0 104 0 N/A N/A
B.S. fract. _]0.26 — 0.31 0.71 B s N/A N/A
Confinement H used 30 =20 p.72 N/A [5.2(0) N/A N/A
Troy. Coef. By used 25 -3.0*@ |e6* L N/A [100)] N/A N/A
B (%) 0.029 - 0.023 | 0.069 0.15 1.0 N/A
Neut. wall load (MW/m?2) 1.6 —1.2 3.5 5.9 12 13
Burn pulse length(hr) 1 —10(d) S. State S. State S. State S. State

* -- Parameter at constraint bound or fixed. (a) Modest physics (H<2, range reflects sensitivity to fn<2.5 - 3, and 1 — 10hr burn).

(b) Advanced physics (H<4, Pn<6, s-state) expected from sucessful TPX program. (c) Can be equally considered point source plasma with a

sphericall FW radius at 3.75 + 0.15(s.0) = 3.9m to keep optimum neut. wall load at ~13MW/m? (optimum due to from blanket changeoput
costs).Note this is also the ultimate ICF reactor (--—rep rate). (d) Cases shown for inductive burn times in the range 1 — 10hr. The ARIES/PULSAR
team (Sept 93) suggest optimum pulse length is ~3hr , implying~70,000 pulse fatigue cycles at end-of-life. A 10hr pulse length machine accrues
~20,000 pulse fatigue cycles. (f) H or By not constrained here but can be backed out from the solution point from other design variables.




Fusion Energy Beats Advanced Fission in
Five Critical Areas.

= Advanced Physics Solutions Must be

Sought for the Remaining Areas

Fusion -v- Advanced Fission

Safety and Environment

Waste Disposal

Non-Proliferation

Fuel Cycle

Advanced energy conversion potential

OOOOO

Capltal Cost | . @G
. -

'_ Complexn‘y and Rehab:l:ty

¢4)

"Development Path _ . | ®®

&
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